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1. Introduction

Flow-induced cavity noise is a harmful noise source in many applications.1 A complex nonlin-

ear phenomenon is responsible for the intense self-sustained oscillations observed in experiments.

However, the pysics is difficult to model analytically. The tonal Strouhal numbers are well approx-

imated by Rossiter's formula2 for a wide range of configurations but this simple semi-empirical

analysis is not able to indicate the main oscillation mode neither its amplitude. Moreover, it is now

/ generally recognized that noise generation mechanism can be dependent on the incoming boundary

layer, the geometric properties of the cavity, the Mach number of the mean flow, and many other

parameters. To predict detailed assessments of noise generation in complex cases, direct evaluation

from fluid mechanics equations through DNS or LES with CAA tools represents the most thorough

technique currently available. Nevertheless, the storage requirement and' computation time make

simulations of both the flow and acoustic fields difficult for realistic applications.

An alternative approach for computing the cavity noise consists of a two step calculation:

nonlinear generation of sound and linear sound propagation. Once sources have been identified,

with CFD or CAA calculations, there are several techniques to calculate the resulting radiated

field. In this work, we propose to study numerical issues of three integral formulations:- the Ffowcs

Williams and Hawkings (FW-H) analogy which extends Lighthill's theory to account for solid

boundaries and two Wave Extrapolation Methods (WEM) from a control surface, the Kirchhoff

and porous FW-H methods. All these integral formulations have similar analytical insights based

on Green's function formalism and suffer from the limitation of the observer in a uniform flow. The

linear wave equation is assumed valid outside the source region, so that nonlinear propagation of

acoustic waves is also not described.

In the first part of this paper, we shall present the direct computation of Navier-Stokes equa-

tions for a two-dimensional rectangular cavity with aspect ratio of 2, matching one configuration

of Karamcheti's experiments.3 In the second part, the far-field noise, associated with sources com-

puted from the previous DNS, is obtained using the three integral formulations. Each method shall
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be described and the results shall be compared with those of direct acoustic simulation taken as a

reference.

2. Direct computation of cavity noise

2.1 Introduction

Despite the amount of numerical studies published on cavity flows, few deal with radiated noise.

Initial attemps have been made in supersonic cases, where acoustic field is dominated by shock

waves radiation. These CFD computations of compressible cavity flows used the two dimensional

unsteady RANS (Reynolds Averaged Navier-Stokes) equations with a turbulence model.4' 5 The

first computations of acoustic radiation from a cavity with a subsonic grazing flow have been carried

out recently by Colonius et al.,6 and Shich & Morris 7 using 2-D Direct Numerical Simulation .(DNS)

at a Reynolds number based on cavity depth ReD = 5000. To investigate higher Reynolds numbers

(ReD) ý_ 2 x 105), Shieh & Morris8 applied CAA tools to solve unsteady RANS with a turbulence

model: the one equation Spalart-Allmaras turbulence model and Detached Eddy Simulation have

been implemented.

In the present work, the tested configuration is a 2-D rectangular cavity with LID = 2, where

L = 5.18 mm is the cavity length and D = 2.54 nmm is its depth. The incoming flow is a laminar

boundary layer with a Mach number M= 0.7 and a thickness 6 ; 0.2D. The Reynolds number

chosen is ReD = 41000 in order to match Karamcheti's experiment.' The latter studied the

acoustic radiation from two-dimensional rectangular cavities cut into a flat surface at low Reynolds

numbers. The acoustic fields were investigated by means of Schlieren observations, interferometry,

and hot-wire anemometer. In our simulation, the freestream air temperature Too is 298.15 K and

the static pressure p, is taken as 1 atm. The relatively thick incoming boundary layer ensures the

shear layer mode of oscillations.9 The choice of a high subsonic speed is interesting because the

frequency increases slightly with Mach number and the cavity is no more compact relatively to the

acoustic wavelength. Moreover, the test case is more relevant for integral methods because mean

flow effects on sound propagation are important.

2.2 Numerical procedure

A Direct Numerical Simulation (no turbulence model) of the 2-D compressible Navier-Stokes

equations is performed. These governing equations are discretized with a fourth order, seven-point

stencil, DRP differencing operator spatially, and are advanced in time with the use of an explicit

4th order Runge-Kutta scheme. 9' 10 Nonreflecting conditions are implemented to avoid spurious

reflections which can superpose to physical waves. To this end, the radiation boundary conditions

of Tam and Dong,11 using a polar asymptotic solution of the linearized Euler equations in the

acoustic far-field, are applied to the inflow and upper boundaries. At the outflow, we combine the

outflow boundary conditions of Tam and Dong, where the asymptotic solution is modified to allow
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the exit of vortical and entropic disturbances, with a sponge zone to dissipate vortical structures

in the region where the shear layer leaves the computational domain. This sponge zone uses grid

stretching and progressive additional damping terms.1" Along the solid walls, the nonslip condition

applies. The wall temperature' T,, is calculated using the adiabatic condition. We keep centered

differencing at the wall to ensure sufficient robustness using ghost points.

The computational mesh is built up from nonuniform Cartesian grid with 147 x i61 points

inside the cavity and 501 x 440 outside, highly clustered near the walls. The minimum step size

corresponds to Ay+in = 0.8 in order to resolve the viscous sublayer. The computational domain

extends over 8.5D vertically and 12D horizontally to include a portion of the radiated field. The

upstream and downstream boundaries are sufficiently far away from the cavity to avoid possible

self-forcing. The initial condition is a polynomial expression of the laminar Blasius boundary layer

profile with no forcing terms. Owing to the strong anisotropic computational mesh, we have a very

stiff discretized system. For explicit time marching schemes, an extremely small time step has to

be used in order to satisfy the stability CFL criterion: At = 0.7 x Aymin/Coo z 6.06 x 10-9 s. A

selective damping, with a mesh Reynolds number of Rs = 4.5, has to be introduced in order to

filter out non physical short waves resulting from the use of finite differences and/or treatment of

boundary conditions. It is applied a second time near the walls. The computation is 4 hours long

on a Nec SX-5.

2.3 Results and discussion
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Figure 1: a) Pressure -history versus time, and b) Spectrum of pressure fluctuations versus the Strouhal
number Sft= fL/Uo,, at x/D . 0.04 and y/D = 2D.

Figure la gives a monitored pressure history in the near-field acoustic region. The flow reaches

a self-sustained oscillatory state after a time of about 25D/U• but is still irregular until 65D/Uoo.

This transient time corresponds with the time needed by the recirculating flow to get installed in

the cavity. The associated sound pressure level spectrum is depicted in figure 1b, and displays one

principal peak at St= 0.68. Several secondary peaks are noticeable and represent harmonics or

subharmonics of the fundamental mode fo. The experimental Strouhal number of oscillations is

St= 0.71. This error of 5% on the predicted frequency can be explained by the different incoming
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flow parameters or by the neglected 3-D effects.

A snapshot of vorticity depicted in figure 2a shows the presence of two vortical structures

convected in the shear layer and impinging periodically the downstream edge of the cavity at

the frequency fo. The induced compression waves travel upstream and excite the shear layer at

the separation point near the leading edge, sustaining the oscillation process. The Rossiter semi-

empirical formula2 provides St= 0.71 for this configuration with always two vortices in the shear

layer.

A Schlieren visualization, corresponding with vertical gradients of density, shows the struc-

ture of the radiated field in figure 2b. Two wave patterns are visible for the positive gradients

(dark), which interfer during propagation. Their strong upstream directivity is characteristic of

high speed convection by the free stream. These radiations are in qualitatively good agreement

with the Schlicrcn picture taken from Karamcheti's experiment. From finite-frange interferometry,

Karamcheti3 estimated an overall pressure level of about 160 dB at a distance of around three

cavity depths. The spectrum of figure lb indicates a level of 156 dB at 2.9D.

Co
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Figure 2: a) Snapshot of vorticity contours (16 contours between wD/Ir = 10.5 and 1.36: (-)
negative contours, (-) positive contours). b) Schlieren pictures corresponding to transversal derivative
of the density: present simulation on the left, Karamcheti's experiment' on the right.

3. Validation of-integral methods

Integral methods rest upon two principal physical backgrounds: first, the acoustic analogy which

split the computational domain in an aerodynamic region, where source terms responsible for noise

generation are built up, and an acoustic region governed by a linear wave equation; second, the

wave extrapolations which allow the evaluation of the far-field once some quantities are known on

a control surface.

Recent advances in integral methods were essentially developed for the reduction of helicopter

rotor noise12 and have been recently applied for the prediction of jet noise. 13 ,14 Zhang, Rona, and

Lilley5 have used Curie's spatial formulation to obtain far-field spectra of cavity noise.
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3.1 Acoustic analogy

The acoustic analogy was proposed by Lighthill' 5 and was extended by Ffowcs Williams and

Hawkings' 6 to include the effects of solid surfaces in arbitrary motion. The FW-H equation is

an exact reairangement of the continuity equation and Navier-Stokes equations into the form of

an inhomogeneous wave equation with two surface source terms and a volume source term. An

integral solution can thus be obtained by convoluting the wave equation with the free-space Green

function.

A serious restriction is that the observation region is assumed at rest. It is difficult to extend the

propagation operator to include more complex flows. Only the case of a uniform flow is satisfactorily

treated. Ffowcs Williams and Hawkings proposed the use of a Lagrangian coordinate transform

assuming the surface is moving in a fluid at rest. Goldstein17 preferred to take the convection

effects in the wave equation. In the same manner, in the case of a motion with constant velocity

U, = (Uj,0), the application of the Galilean transformation from the observer position (3, t),
moving at -U, to the fixed location (x, t), defined by:

xi = i + Uit,

leads to the convected FW-H equation' 8 :

( + + 2Uj &2  _2 (H(f)c2.p(x'w))

a - i(L x,W)H(f)) -(AXw c) + it- ((X'W~WP) (1)zi'9Xj (t)ý x

where the modified source terms including convection can be written as:

Tij =p(ui - Ui)(uj - Uj) + 1P - -.•p'] ij - Tij (2)

P [p vUiUj +p6ij Tj)] (3)

[-P.Uj] Of (4)

H is the Heaviside function and the function f = 0 defines the surface EJ outside of which the

density field is calculated. f is scaled so that 9f/O0xj = nj, the j-component of the unit normal

vector pointing toward the observer domain (f > 0). For a rigid body, we have simplified the

surface source terms using the impenetrability condition u.n = 0.

For bidimensional geometries, it is more convenient to resolve this equation in the spectral-

domain.1 8 The frequency-domain formulation avoids the evaluation of the retarded time, which

can be a critical point. The gain over the time-domain applications is enhanced in 2-D because of the

weaker properties of the Heaviside function which replaces the Dirac function. Whereas the Dirac

leads to a retarded time expression removing the temporal integration, the Heaviside function can
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only change the upper limit of the integration to a finite value, the lower limit remaining infinite.

Thc spectral formulation removes this time constraint by solving FW-H equation harmonically.

With application of the Fourier transform:

-F [(X, t)] =(X, w) = f (X, t)C-iwt dt (5)
•o

equation (1) becomes

2iMk- M 2) (H(f)c2.p'(x,w))
02 Ox (6)O~

aa(02 xwH~) (- ((x,W)J(f)) - iWQ(x,w)J(f) (6)O~xiax "tj xw)f) _ x

where Mi = Ui/c,,. A Green function for this inhomogeneous convected wave equation is obtained

from a Prandtl-Glauert transformation of the 2-D free-space Green's fonction in the frequency

domain:

G(x I y,w) = 4-/ 2)o r/ (7)

where r,3 = (xi - yi) 2 + /[-2(x-2 - y2) 2 , H(2•- is the Hankel function of the second kind and order

zero, and v/ = 1 - M2 is the Prandtl-Glauert factor, M< 1. The integral solution of equation (6)

is then given by:
H (f )j(xw) - = (y, w) OG(x I y) dr- f iwQ(y,w)G(x Iy)dE

-fff(o "0 J Y)

- ff ij(Y, W) y) dy (8)

In 2-D, the volume integral is restricted to the surface including the aerodynamic sources Tij and

the surface integrals are calculated on the solid lines which represent rigid boundaries. We applied

the spatial derivatives on the Green function to avoid the evaluation of derivatives of aerodynamic

quantities. It is formally equivalent to the transformation in temporal derivatives as performed by

di FrancescantonioI 9 or Faxassat and Myers. 20

3.2 Wave extrapolation methods

This kind of methods permits one to solve linear wave propagation problem once some flow -

quantities are given on a closed fictitious surface surrounding all the sources. The most famous one

is the Kirchhoff method which makes a parallel with electromagnetism by using Kirchhoff's formula,

published in 1883. The use of the FW-H equation for a permeable surface can provide an alternative

extrapolation method as noted in the original Ffowcs Williams and Hawkings paper. 16 This method

has been recently implemented by di Francescantonio. 1 9 At nearly the same time, Brentner and

Farassat 2 l demonstrated the relationship between the FW-H equation and the Kirchhoff equation

for moving surfaces. The FW-H and Kirchhoff formulations solve the same physical problem, the

differences between the two writings being due to some choices made in the derivation process.
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The main advantage of wave extrapolation methods with respect to acoustic analogy approaches

is that only surface integrals have to be evaluated because all non linear quadrupolar sources are

enclosed in the control surface. The problem is thus reduced by one dimension, which is particularly

interesting in a numerical point of view.

The convected Kirchhoff method

For a moving medium, the acoustic pressure at an arbitrary point x and time t is related to

the distribution -( of sources within V and the distribution of the pressure and its derivative on the

boundary of V by the generalized Green's formula.17 For a 2-D configuration, it can be written as:

H(f)p'(x, t) = f(Y, T)G(x, tly, T) dydT

V(f>O)

f71 JG2 {GnPfi dE(Y)dT+.4 f {P lGDT} nid(yjd-r

Z(/=0.) rE(f=O)

where D/Dt is the time rate of change seen by an observer moving along with the mean flow.

Expressing the Green's function in the frequency-domain (7) and assuming all the quadrupolar

source 7 are included in E, we obtain:

H(f)p'(xw) = L +p(y,w) (2) k (2)

f=O

- iM,ýI Hý2) ( r 3)] x exp (ZMk(xi -y1))d~p (9)

where n13 and dE,3r are the Prandtl-Glauert transforms of n and dE. This is the bidimensional

Kirchhoff formulation for a uniformly moving medium in the frequency-domain.

The Ffowcs Williams and Hawkings WEM

This method is sometimes called the porous FW-H method because it coincides with the ap-

plication of the FW-11 analogy on a fictitious porous surface. The analytical developments are the

same that those of the FW-H analogy but the impenetrability condition is no more required, and,

on the contrary, one has to allow a fluid flow across E. For a two-dimensional problem with uniform

subsonic motion, the FW-H WEM is given by equation (8) without the volume integral:

H(f)p(xw) - FA(y, w) OG(xYI dy) d-f iwQ(y,w)G(xjy)dE (10)

with the two source terms:

Pi = [p(uf - 2Uj)u3  p.UiUj +Pjij - Ti] Of (11)

Ox(2
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3.3 Numerical implementation

From an algorithmic point of view, there is almost no difference between the three integral

approaches considered here. The first step is the recording of the aerodynamic quantities during one

period of the DNS computation. The acoustic time step is 40 times the DNS time step corresponding

to 131 points per period. In the convected Kirchhoff method, the pressure distribution and its

normal derivative over the three lines L1, L2, and L3 spanning the longitudinal direction are

needed to perform the surface integration. The normal derivative Op/ly 2 is not directly available

from the near field solution and is here calculated with the DRP scheme. The variables (u1 , , p, p)

are recorded on the same three fictitious lines for the FW-H WEM, and on the walls of the cavity

and the surface around it for the FW-11 analogy application as reported in figure 3.

0.5 D................. . ......

-5 D-SD -D D 5

0 D 2 D

Figure 3: Schematic of the different line and surface sources for evaluation of integral formulations.

The source terms are calculated and transformed in the frequency-domain using the Fourier

transform defined by (5). The integrals are then evaluated for each point of an acoustic meshgrid.

This regular cartesian grid of 176 x 184 points covers a area of (-5D; 5D) x (-1D; 8D), corre-

sponding with the main part of acoustic domain of DNS. Endly, an inverse Fourier transform is

used to recover the acoustic signal in time-domain.

3.4 Results and discussions

In the Kirchhoff method, the results of the integration of (9) over LI, L2, and L3 are depicted

in figure 4. Same results are obtained for the extrapolation using the permeable form of the FW-

H equation. The pressure fields from integration over L1, L2, and L3 with source terms defined

by (11), and (12), and with M= 0.7 in the observer domain are compared in figure 5. All the

computed far-fields are consistent with that of DNS depicted in figure 6b, even when the control

surface is located in the near-fieldcxegion. The contour plots are only little sharper when the surface

is farther from sources because more nonlinear effects are included in the control surface. In this

configuration, the additional nonlinear terms appearing in the surface integrals of FW-H WEM but

missing in the Kirchhoff formulation as noted by Brentner and Farassat 21 do not play a significant

role and do not lead to the drastic differences observed in some previous comparisons when the

control surface is too close to the sources. 21,22 Like di Francescantonio1 9 or Prieur and Rahier, 23

we notice a similar behaviour of the two extrapolation methods. The advantage of porous FW-H

method is only the fact that it uses directly the quantities computed by direct simulation without

the need of further numerical process.
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4 41

a) b) c

Figure- 4: Pressure field calculated at the same time by a) Kirchhoff's method from L1, b) Kirchhoff 's
method from L2, c) Kirchhoff's method from L3.1 I

a) b) c)

Figure 5: Pressure field calculated at the same time by a) FW-H WEM from L1, b) FW-H WEM from L2,

c) FW-H WEM from Lc .

When we apply FW-H analogy, the surface integrals are evaluated on the physical rigid walls

8 1

of the cavity and the volume integration is •performed over the two surfaces S, and S2 depicted in

figure 3. The evaluation of volume integrals of Tij axe sensible to truncature effets, especially in the

streamwise direction where the source terms decrease slowly. It is due to the presence of advected

vortices, ejected from the cavity, during the clipping process, in the reattached boundary layer on

the downstream wall. By summing the volume and surface contributions (fig. 6a), we reconstruct

the total sound field in reasonably good agreement with the DNS reference. solution of figure 6b.

A quantitative comparison with the other methods is provided by the pressure profiles and fax-

field directivity of figure 7. The results of the two WEM axe similar and in fairly agreement with

the DNS reference solution whereas more differences can be seen for the acoustic analogy profile.

The main discrepancies for the directivity occur near the small angles 0 (i.e. in the downstream

direction) where the volume integration is abruptly cut by the end of the computational domain

at x, 5D, leading to truncature errors.
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-1 l

a) b)

Figure 6: Pressure field calculated at the same time by a) FW-H analogy (surface + volume integrals), b)
DNS reference solution.
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a) b)

Figure 7: a), Pressure profile along the line x, + X2 2D (r = xVx + x') b), Overall sound pressure level
as function of 0 measured from streamwdse axis with center at the downstream edge of the cavity. (-- - -
) Kirchhoff's method from L 1, ( . . ) FW-H WEM from L1, (----) FW-H analogy, (- ) DNS.

However, FW-H analogy allows a better understanding of the structure of the radiated field than

WEM since the direct and reflected sound field can be separated. Following reflection's theorem

of Powell,24 we can indeed argue that the volume integral (fig. 8a) represents the direct radiated

field, and the surface integrals (fig. 8b) show essentially the reflected part of the field due to the

cavity walls. These two fields at the same frequency give an interference figure where the two waves

patterns are still distinguishable in our case- because the cavity is not compact at the oscillation

frequency (L/A = 0.47).

The FW-H analogy provides more informations than the WEM but is more expensive in CPU

time because of the evaluation of volume integral (surface integral in 2-D) whereas wave extrapola-

tion methods need only surface integral (line integral in 2-D). For example, the computation time

needed by the FW-H WEM is around 13 minutes, whereas the FW-H analogy requires 17 hours, on

a Dec a computer. For the purpose of comparison, the DNS would take 320 hours on this machine.
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• 2

a) b)

Figure 8: Pressure. field obtained corresponding to: a.) volumne integral palrt of FW-H analogy, and b) surface
integral part of FW-H analogy.

4. Conclusion

In a first part, a direct calculation of the sound radiated by a flow over a 2-D rectangular cavity

is carried out. To this end, a DNS is performed using CAA numerical methods. This approach is

expensive but is able to give all the interactions between flow and acoustic, and provides a powerful

tool to determidne noise generation mechanisms. The directly computed sound field is qualitatively

and quantitatively consistent with Kaxameheti's measurements in the same configuration.

The results of DNS axe then successfully compared to three hybrid methods which use the

DNS aerodynamic quantities to solve integral formulations. The wave extrapolation methods, like

Kirchhoff's or porous FW-H methods, axe relatively unaffected by the location of the control surface

and constitute interesting complementary tools to extend CAA near-field to the fax-field. Acoustic

analogy is less efficient because volume integrations axe costly and sensible to truncature effects.

Nevertheless, it allows a separation between direct and reflected sound fields, which is useful for an

analysis of radiation patterns.

To extend the present investigation, a 3-D simulation should be carried out. The recirculation

zone inside the cavity is indeed characterized by a three-dimensional turbulent mixing, even if the

development of the shear layer is almost two-dimensional. Such a study is under way.

.- 7
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